

ACD2-MRL培训资料

产品开发中心 苏晓磊

-1-

目录

◆ Part1: ACD2 MRL总体介绍	3
◆ Part2: 主要参数设置及故障处理	12
◆ Part3: RBI操作介绍	29
◆ Part4:软件升级操作	37
♦ Part5: SPBCII介绍	44
◆ Part6: 附录	50

Part1: ACD2 MRL总体介绍

GeN2 Regen发展过程

OH-CONB604MRL

GeN2 Regen电梯目前涵盖了2种控制系统: 1. OH-CONB604MRL(2010年之前) 2. ACD2-MRL(2010年之后)

ACD2-MRL设计概念

✓ 无机房电梯 ✓ 控制柜+E&I Panel+ Regen变频器

Size: 320W x 1300H x 160D

ACD2-MRL实物照片

E&I Panel Size: 210W x 540H x 90D

Controller Size: 320W x 1300H x 160D

× +m +⁄z		>V (m/s)					
どた	▶规格		≻1.5/1.6	≻1.75			
	≻630(8)						
	≻680(9)						
	>800(10)						
	≻1000(13)						
≻LD	≻1150(15)						
≻(KG)	≻1275(17)						
	≻1350(18)						
	≻1600(21)						
	≻1800(24)						
	>2000(26)						

▶ 产品覆盖到2000kg@1.75m/s

▶ 变频器配置情况

	Duty(kg)	1.0m/s	1.5m/s	1.6m/s	1.75m/s			Duty(kg)	1.0m/s	1.5m/s	1.6m/s	1.75m/s				
	630	OVFR2B-402	OVFR2B-402	OVFR2B-402	OVFR2B-402							630	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403
	680	OVFR2B-402	OVFR2B-402	OVFR2B-402	OVFR2B-402				680	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403			
	750	OVFR2B-402	OVFR2B-402	OVFR2B-402	OVFR2B-402			750	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403				
	800	OVFR2B-402	OVFR2B-402	OVFR2B-402	OVFR2B-402			800	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403				
lahil	900	OVFR2B-402	OVFR2B-403	OVFR2B-403	OVFR2B-403			900	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403				
Jabii	1000	OVFR2B-402	OVFR2B-403	OVFR2B-403	OVFR2B-403		Berlin	1000	OVFR2B-403	OVFR2B-403	OVFR2B-403	OVFR2B-403				
	1150	OVFR2B-402	OVFR2B-403	OVFR2B-403	OVFR2B-403					1150	OVFR2B-403	OVFR1A-404	OVFR1A-404	OVFR1A-404		
	1275	OVFR2B-403	OVFR2B-404	OVFR2B-404	OVFR2B-404				1275	OVFR2B-403	OVFR1A-404	OVFR1A-404	OVFR1A-404			
	1350	OVFR2B-403	OVFR2B-404	OVFR2B-404	OVFR2B-404			1350	OVFR2B-403	OVFR1A-404	OVFR1A-404	OVFR1A-404				
	1600	OVFR2B-403	OVFR2B-404	OVFR2B-404	OVFR2B-404			1 [1600	OVFR1A-404	OVFR1A-404	OVFR1A-404	OVFR1A-404		
	1800	OVFR2B-404						1800	OVFR1A-404	OVFR1A-404	OVFR1A-404	OVFR1A-404				
								2000	OVFR1A-404	OVFR1A-406	OVFR1A-406	OVFR1A-406				

➤GECB配置情况 标配国产 ASIAN IO + CP GECB板,件号KBA26800ABG6

Part2: 主要参数设置及故障处理

31.	SETUP						
No.	Symbol	Default	Range	Since	Actual	Remark	
0	Interface Type	1	0~4				1
3	*Drive Type	20	15~9999		合同参数	OVFR1A-402 Drive;25 OVFR1A-404 Drive;40 OVFR1A-406 Drive;60 OVFR2B-402 Drive;20 OVFR2B-403 Drive;30 OVFR2B-404 Drive;40	参见第14页主 机设参数置介 绍
7	*Motor Type	-	100~999		合同参数	630/680kg@1m/s: 101 800/1000kg@1m/s: 203 630/680kg@1.5/6m/s: 102 800/1000kg@1.5/6m/s /s: 204 680kg@1.75m/s: 204 800/1000kg@1.75m/s: 204 ABA20220 AS1(Motor P/N): 393 ABA20220 AS2(Motor P/N): 395 ABA20220 AS3(Motor P/N): 394 AAA20220BD: 此值设置为 902、参数参照附录1设置	
8	* Duty Speed mm/s	-	10~16000		合同参数		参见第16页编
9	* Rated rpm	-	1~5000		合同参数		码器介绍
10	*Inertia kg-m2	2	0.01~9999.99				
11	*Encoder Type 0/1	0	0~1				1
13	*Encoder PPR	3600	1000~10000			3600/4096	1
16	*Load Weight Type	2	0~3		2	工厂测试时设置为"0"	1
17	*Load Wgh Lvl 1 %	10	0~120				──参见第18页
18	*Load Wgh Lvl 2 %	30	0~120				1 放重众切
19	*Load Wgh Lvl 3 %	50	0~120] 【你里汀的
20	*Load Wgh Lvl 4 %	80	0~120				
21	*Load Wgh Lvl 5 %	100	0~120				
22	*Balance %	47	0~77				
24	*Vane Sensor Type	0	0~99				

OF

主机类型设置方法

▶ 根据载重速度设置

31 SETUP	Min	Max	设定值
*Motor Type	100	999	630/680@/s:101
			800/1000@/s:203
			630/680@1.5/6m/s:102
			800/1000@1.5/6m/s /s:204
			680@/s:204
			800/1000@1.75m/s:204
			ABA20220 AS1 (Motor P/N):393
			ABA20220 AS2(Motor P/N):395
			ABA20220 AS3(Motor P/N):394
			AAA20220BD Motor P/N):902

▶ 根据主机件号设置

Motor Model	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2 R2	Gen2
	1.5T	1.5T	2.5T	2.5T	5TA	5TB	5TB	41T/50T
Otis P/N A*A20220-	AV102 AV202	AV104 AV204	AV302 AV402	AV304-AV306 AV404-AV406	AS1	AS2	AS3	BD
3-1 CONTRACT								
Motor Type	101	102	203	204	393	395	394	902

主机参数设置方法

✓AAA20220BD 系列的GeN2 主机参数设置(M-2-3-4) & Motor Type=902 (M-2-3-1)

Parameter	Units	41T-53X1	41T-56X1	50T-56X2	50T-53X2
Number of Poles		14	14	14	14
Rated Trg	Nm	300	300	420	420
Rated Trg I	Α	16	28	36.2	21.7
Ld	mH	52	20	15.5	44
Lq	mH	90	29	20	73
R	Ohm	0.8	0.8	1.6	0.7
T/A Slope	%	37.4	40	39	37
T/A Offset	A	4.8	9.5	11.6	7.39
Kt Slope	1/kNm	0	0	0	0
Id Saturation	A	3	7	5	3.4
Iq Saturation	Α	16	5	5.3	4
Ld Slope	mH/A	0.9	0.2	0.17	0.7
Lq Slope	mH/A	0.5	0.33	0.18	1
Lq0	mH	75	32	22	73.8
Lq1	1/mA	0	0	0	0
Lq2	1/mA^2	0	0	0	0
Ld0	mH	60	10	10	35.6
Rated Motor	rpm	330	576	576	330
Mag err thr	eDeg	20	20	20	20
LRT DC Level PU		0.1	0.1	0.1	0.1
LRT mot err eDeg		8	8	8	8

✓ 以上AAA20220BD 系列的GeN2 主机参数设置是基于变频器软件低于 ***30924CAH时的设置方法。当变频器软件等于或高于***30924CAH时,请参照下表设置主机类型。

	41T-	41T-	50T-	50T-
	53X1	56X1	56X2	53X2
GDCB Motor Type	403	404	502	501

件号: AAA633AG22 , Tamagawa增量式编码器,编码器脉冲3600。适用GeN2主机件号: A*A20220AV202/204/402/404/405/406

件号: AAA633AJ1, Tamagawa增量式编 码器,编码器脉冲4096。适用于GeN2主机 件号: AAA20220BD1/BD11/BD21/BD31

OEC

▶ 通过以上介绍可知, 2种编码器均为增量式编码器, 所以变频器中编码器 类型需要设置为0, 即下表参数设置:

31 SETUP	Min	Max	Actual
*Encoder Type 0/1	0	1	0

▶对于编码器脉冲数, 一般大于1000KG时 "*Encoder PPR"设置为4096、 小于或等于1000KG "*Encoder PPR"设置为3600, 即下表参数设置:

31 SETUP	Min	Max	Actual
*Encoder PPR	1000	10000	3600

- ▶ GeN2-Regen采用的是装在绳头的模拟称重,称重信号通过CAN通讯传送至GECB
- ▶ 空载状况下井道位置自学习的同时,亦完成了称重的自学习
- ▶ 变频器M-2-3-1中称重类型设置 "Load Weigh Type" 为0

满载时如果发现变频器称出的重量与实际轿厢重量偏差太大,可以通过以下 2种方法进行调节:

- a) 检查称重传感器是否正确安装
- b) 电梯是否在空载状态下成功完成自学习
- c) 称重是否有成功完成自学习

如果以上几条均没有问题,可以把GECB菜单M-1-3-1-2种的参数 "OLD" 更改小一点,即下表参数:

No.	Symbol	Default	Purpose and Range
20	OLD(%)	110	Lower Limit for OLD load
			100 (1) 110 %

对于变频器软件版本等于或高于***30924CAH时,大家还可以通过更改变频器M-2-3-1中的参数 "HitchLw full BOT"实现对称重的矫正。对于满载时实际重量大于称重反馈的重量时,可以减小这个参数以达到矫正的目的。

抱闸电路差异_VS OH-CONB604MRL

ACD2-MRL有内外部抱闸之分,且抱闸电压均为48VDC:

≻ 内部抱闸,主要适用于OVFR2B变频器

▶ 外部抱闸,主要适用于OVFR1A变频器

通过上页PPT的介绍,可知ACD2 MRL会有内外部2种抱闸控制电路, 到目前为止,只有60A变频器采用外部抱闸控制,其余型号变频器全部是 内部抱闸控制电路。因此,下表内的抱闸类型会有2种情况,大家可以根 据现场变频器的配置情况进行设置。

33.	BRAKE					
No.	Symbol	Default	Range	Since	Actual	Remark
0	*Internal Brk 0/1	0	0~1			OH-CONB604MRL: 0 ACD2-MRL: 0(外部抱闸)/1(内部 抱闸)

电梯快车运行时的启动舒适感,可以通过以下几个参数调节:

a) 惯量, ACD2 MRL系统的惯量根据载重速度的不同,通常设置在1.5~5之间为宜。该参数对启动舒适感影响较大,工地需要合理设置该参数。

No.	Symbol	Default	Range	Since	Actual	Remark
10	*Inertia kg-m2	2	0.01~9999.99			

b) 平衡系数,该参数对启动舒适感影响也比较大,需要被正确设置。如果发现舒适 感不佳,可以适当的增大或减小该参数以达到比较好的启动效果。

No.	Symbol	Default	Range	Since	Actual	Remark
22	*Balance %	47	0~77			

c) 预转矩, 该参数对启动舒适感影响也比较大, 工地可以根据实际情况合理设置该参数, 以达到比较好的启动效果。

No.	Symbol	Default	Range	Since	Actual	Remark
20	Pretorque Trim %	100	50~150			

在保证井道位置成功自学习、以及擦板位置调整到位后,如果平层精度还 不是很好,可以通过以下2个参数进行再度调整:

32 ADJUSTMENT	Min	Max	Default	Actual
*VaneBias (10) mm	7	13	10	
*Vane Hysteres mm	0	20	0	

- ➤ "VaneBias (10) mm",一般对于上下行两个方向每层都有高出或低于 平层的情况,可以调整这个参数加以校准。
- "Vane Hysteres mm",一般对于当单个方向有超出平层的情况,可以调整这个参数加以校准。调整规则一般为超出的数值除以2,即为这个参数的值。

502 Vel Tracking

- •主机相序错误,更改"Motor Phase 0/1"
- 编码器问题或编码器连接有问题,检查编码器及相关接线
- •惯量设置不合适,参照指导一般把该参数设置到1.5~5之间
- "Start Gain Ot PU"设置不合理,由于ACD2 MRL标配了绳头的称重, 一般该参数设置为1
- "Track Error mm/s",可以适当增大该参数
- 抱闸没有打开,检查抱闸电路,包括抱闸电路元器件是否有问题,如SW、 BY

常见故障处理_529&530

529 No enc fdbck

- •编码器类型设置错误,更改编码器类型"Encoder Type 0/1"
- •编码器脉冲设置错误,更改编码器脉冲"Encoder PPR"

530 No enc tmout

- •检查编码器及编码器接线
- •检查"Start Gain Ot PU"设置是否合理
- •检查惯量设置是否合理
- •检查抱闸电路,察看是否有元器件损坏或接线错误

常见故障处理_606 & 705

606 Mtr Tmp Over

- 主机热敏线没有可靠连接至变频器
- •变频器GDCB板损坏

705 E2 Invalid

• 变频器中有参数没有设置,这种情况多发生在软件升级后,多出了一些空 白参数,此时只要找出这些参数并正确设置一下就可以了。

X O E C X

常见故障处理_520 & 400 & 401

150

520 RIIbck Start

- •增大惯量"Inertia kg-m2"
- 增大预转矩 "Pretorque Trim %"

400&401 Brake SAS

- 抱闸开关设置不正确,检查参数"Brk Switch 0 4"
- 抱闸开关接线有错误
- 抱闸没有打开,检查抱闸回路
- •参数 "Brk Pick Time ms"、"Brk Setl Time ms"太小,适当增大

常见故障处理_108 Inv HW Oct

108 Inv HW Oct

- 主机相序 "Motor Phase 0/1" 设置不对
- 抱闸没有打开,检查抱闸回路,及抱闸回路元器件,如SW、BY好坏
- 变频器损坏

Part3: RBI操作介绍

- 29 -

- ▶RBI装置是GeN2 电梯专用的、用于检测电梯 钢带好坏的装置。由负责钢带检测的集成电路 板单元和短接连接器组成。
- ▶当RBI安装完毕,并与电梯控制系统用合适的 接线方式连接后,集成电路板单元将检测钢带 的阻值。
- ➢RBI钢带检测装置有三种输出接口:离散信号接口、串行通讯接口、继电器触点接口。XOEC目前使用的都是继电器输出接口。

卸下RBI装置盖板,连接上SVT(service tool),便可以进入以下显示介面:

SELF TEST -OK- MECS-MODE

PRESS: <"M" >

RBI: xxx30934xxx Press F to start

&

Copyright (c)2005 Otis Elevator Co

PRESS: <"M" > <"F" >

Setup=1 View=2 Learn=3

RBI服务器结构

> Setup 菜单主要用于设置钢带的根数及钢带长度,从而获得钢带起始电阻;

- ➢ View菜单主要用于监控钢带状态,包括钢带电阻状态及故障状态;
- ▶ Learn菜单用于钢带自学习。

用SVT自学习

Kev Pressed	Screen Shown After
· · · · · · · · · · · · · · · · · · · ·	Key is Pressed
	键入后屏幕的显示
接上SVT 'Service Tool' 后	SELF TEST -OK- MECS-MODE
М	RBI: xxx30934xxx Press F to start Copyright 2003,4 Otis Elevator Co
F	Setup=1 View=2 Learn=3
3	Start Resistance Auto Learn=1
1	Are new Belts Installed? (9=Y)
9	Any Previous SRs Erased OK? (9=Y)
9	RBI System now in Learn Mode

用SVT来获得当前电阻值

Key Pressed	Screen Shown After
键入	Key is Pressed
·	键入后屏幕的显示
接上SVT 'Service Tool' 后	SELF TEST -OK- MECS-MODE
М	RBI: xxx30934xxx Press F to start Copyright 2003,4 Otis Elevator Co
F	Setup=1 View=2 Learn=3
2	Status=1 StrtR=2 CordR=3 Cord%=4
3	Enter the Belt# to View (1-5)
B,PP=###.### Ohm channel = <>	B是钢带的序号 PP是钢芯对序号
After entering CSB	###.###当前电阻值
number (1 – 5) 输入	单位为欧姆
钢带的序号后	

用SVT来获得起始电阻值

Key Pressed	Screen Shown After Key is
键入	Pressed
	键入后屏幕的显示
接上 TT 'Service Tool' 后	SELF TEST -OK- MECS-MODE
М	RBI: xxx30934xxx Press F to start Copyright 2003,4 Otis Elevator Co
F	Setup=1 View=2 Learn=3
2	Status=1 StrtR=2 CordR=3 Cord%=4
2	Enter the Belt# to View (1-5)
B, PP=###.### Ohm channel = <> After entering CSB number (1-5) 输 入钢带的序号后	B是钢带的序号 PP是钢芯对序号 ###.###起始电阻值 单位为欧姆

用SVT来获得基于起始电阻值的百分比变化

Key Pressed	Screen Shown After Key is Pressed
键入	键入后屏幕的显示
接上 TT 'Service Tool' 后	SELF TEST -OK- MECS-MODE
М	RBI: xxx30934xxx Press F to start Copyright 2003,4 Otis Elevator Co
F	Setup=1 View=2 Learn=3
2	Status=1 StrtR=2 CordR=3 Cord%=4
4	Enter the Belt# to View (1-5)
	B是钢带的序号
B,PP=###.###%	PP是钢芯对序号
channel = <>	###.###基于起始电阻值的百分比
After entering CSB	
number (1 – 5) 输 入钢带的序号后	

故障代码及原因分析

状态代码 LED指示灯的闪烁次数	故障描述	详细故障描述	原因	纠正动作 (工地人员应该检查)
			没有安装钢带	不需要进行检查
			钢带短接问题	检查钢带连接
0	没有钢带被检测	自学习操作完成后没 有钢带被检测到	检测电路板问题	更换电路板然后重新自 学习
			钢带问题	更换钢带然后重新自学 习
1	正常	所有钢带检测正常	-	-
2	预留	预留	-	-
3	预留	预留	-	-
4	预留	预留	-	-
	药数 冼宁再华纲		钢带两侧连接问题	检查所有钢带的连接情 况然后清除故障
5	5 顶警-确定更换钢 带的时间表	报警状态	钢带接近预期的使用寿 命,钢带可能有磨损的 部分	视觉检查钢带的外观损 坏程度。在最长1年的时 间里制定钢带更换计划
	警报-马上更换钢 带	警报状态	钢带两侧连接问题	检查所有钢带的连接情 况然后清除故障
6			钢带达到预期的使用寿 命,钢带可能有磨损的 部分	不允许电梯进行服务运 行,直到所有的钢带被 更换

7	检查RSL连接和系 统连接	RSL接线错误或者RSL通 讯失败	RSL功能没系统支持或者接 线错误	如果连接正确,检查外部 RSL系统;如果RSL系统没 有连接,检查DIP开关,当 S1被设置为0时,RSL接口 无效
			检测板上的RSL接线问题	检查检测板上的RSL接线
			检测板问题	更换新的检测板,保留现 有EEPROM
8	不使用的	-	-	_
9	EEPROM故障	数 据 存 档 失 败 。 EEPROM中无效的初始 电阻值引起	EEPROM 被损坏	使用空白EEPROM更换, 然后重起系统
10	更换电路板,保留 现有EEPROM	电路板损坏	电路板上的快速存储器被 损坏	更换电路板,保留现有 EEPROM
	钢带连接问题	自学习操作中发现钢带 连接问题	钢带两端连接问题	正确的连接钢带然后重新 自学习
11			有缺陷的检测板或者钢带	更换检测板重新自学习, 如果问题依然存在,请更 换钢带
	初始电阻错误	在自学习操作过程中, 钢芯的初始电阻值非常	钢带两端连接问题	正确的连接钢带然后重新 自学习
12			有缺陷的检测板	更换检测板重新自学习
		入 	有缺陷的钢带	更换钢带重新自学习
10		检测单元检测到环境温	环境温度过高	环境温度必须被控制在55 ℃以下
12	开迫血度也同	度过高	如果环境温度正常,则检 测板有问题	更 换 检 测 板 保 留 现 有 EEPROM
14	不使用的	-		
15	准备状态	钢带检测装置已经处于 准备状态,但是未开始 检测功能	需要自学习操作	上电后一切正常;没有处 于检测状态;需要自学习 操作

Part4:软件升级操作

- 37 -

ACD2 MRL的GECB软件升级可以有2种方式:

- 1,使用SVT通过厅外的SPBC操作;
- 2,直接在井道中通过将SVT插到GECB上进行操作。

请在升级软件之前先查看 GECB中现有的软件版本 号,以及OMU标签上的软 件版本,以确认是否需要 升级、或升级的软件版本 是否正确。

GECB软件升级步骤3

ACD2 MRL的变频器软件升级与GECB一样,可以通过以下2种方式操作:

1,使用SVT通过厅外的SPBC操作;

2,直接在井道中通过将SVT插到GECB上进行操作。

请在升级软件之前先查看 GDCB中现有的软件版本 号,以及OMU标签上的软 件版本,以确认是否需要 升级、或升级的软件版本 是否正确。

XOEC

GDCB软件升级步骤3

XOEC

Part5: SPBCII介绍

- ➢SPBCII 用于实现无机房电梯接口操作、以及松闸操作等功能。通过SPBCII可以很 方便的实现对变频器、GECB的操作;
- > SPBCII提供了丰富的LED指示灯信息,时时显示电梯的状态;
- > SPBCII提供了丰富的按键,可以实现对电梯的多种操作;
- ▶ 可实现对48VDC抱闸电压的GeN2主机实施松闸操作。

目前SPBCII仅用于ACD2 MRL控制系统电梯。

SPBCII 常用功能按钮介绍

Button	Description	Type SPBC
CCTL	呼梯至顶层按钮	Push
CCBL	呼梯至底层按钮	Push
CHCS	取消外招	Push
DDO	屏蔽开门操作	Push
REB	远程操作使能按钮	Shift
REB & RTB	限速器测试按钮	Push
REB & RRB	限速器复位按钮	Push

Note:

RTB或RRB操作时,必须同时按住REB按钮,否则操作无效。

SPBCII 各状态指示灯介绍

LED	description
GRP	群控模式
NOR	正常模式
INS	检修模式
ES	急停,安全断掉
DW	门锁不通
DFC	门锁不通
DOL	开门到位
DOB	开门信号
CCTL	呼梯至顶楼
CCBL	呼梯至底楼
CHCS	屏蔽外招
DDO	屏蔽开门操作
RTB	限速器测试
RRB	限速器复位

SPBCII上各状态灯和控制柜内GECB是一致的,因此可以方便的通过SPBC 上各信号灯的状态去查看当前电梯的状态。

SPBCII电池充电功能

LED描述状态BAT-CHARGE电池快速充电 / 充电前的检查●*MAINTENANCE电池电量充满后的浮充●●FAULT快速充电/充电前的检查/浮充 有问题○BAT-MODESPBC使用控制柜供电○

Note:

电池需要辅助充电。当进行操作前,电池必须先要充电最少8小时(整晚)。当电梯的 电源被切断后,电池会供应给SPBCII,SPBCII会消耗电池的电能。

当电梯长时间断电(大于6小时)时,请将电池与SPBCII切断,并不要忘记当恢复电梯 供电时恢复电池与SPBCII的连接!

松闸操作步骤:

- 1,断电,并确认电梯处于零能源状态
- 2,钥匙开关(BRB2)拨到"ON"位置

3,按住BRB1按钮

Note:

松闸至平层时,轰鸣器会响起, 此时可以停止松闸操作,开门 放人。如果继续松闸,则电梯 会继续点动运行,远离平层位 置。

Part6: 附录

- 50 -

提前开门和再平层功能设置

The End! Thanks

XOEC